Structure Reports

Online
ISSN 1600-5368

1,4-Dibenzylpiperazine-2,5-dione

The title compound, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$, crystallizes in the centrosymmetric monoclinic space group $C 2 / c$ with half the molecule as the asymmetric unit (molecules are located on inversion centers). $\pi-\pi$ interactions between the benzene rings are found, with a perpendicular distance of 3.657 (11) Å between ring centroids.

Comment

The importance of $\pi-\pi$ interactions in many molecules containing aromatic rings (Hunter \& Sanders, 1990; Burley \& Petsko, 1985; McGaughey et al., 1998) has been well established in the literature. Piperazine-2,5-diones are commonly found in biologically active natural products; their cyclic dipeptide structure and prevalence in nature make them important targets in the search for new drugs (Witiak \& Wei, 1990; Dinsmore \& Beshore, 2002). This study of 1,4 -di-benzylpiperazine-2,5-dione, (I), a piperazinedione with the potential for $\pi-\pi$ interactions, is one of a series on these interactions in aromatic compounds, including a novel trisindole amine (Carpenter et al., 2004).

(I)

The title compound crystallizes in the centrosymmetric monoclinic space group $C 2 / c$ (No 15) with half the molecule in the asymmetric unit (Fig. 1). This molecule exhibits $\pi-\pi$ interactions between the benzene rings of adjacent molecules stacking down the b axis, with a perpendicular distance of 3.657 (11) A between ring centroids. The benzene rings form an angle of $109.6(2)^{\circ}$ with the piperazine ring, with one angled in the positive direction and one in the negative direction, forming a zigzag pattern (Fig. 2).

The same molecular formula is shared by cyclo(-L-phenyl-alanyl-L-phenylalanyl-) (CPA) (Gdaniec \& Liberek, 1986), the difference being that the benzyl groups are on the piperazine ring C atoms in that compound and on the N atoms in the title compound. The title compound clearly exhibits $\pi-\pi$ interactions, while CPA does not. The CPA molecule has both benzyl groups cis to the piperazine ring, with dihedral angles to it of 55.4 (5) and 35.7 (1) (our calculations), while in (I) the benzyl groups point in opposite directions. A novel tris-indolyl amine (Carpenter et al., 2004) with three 'arms' extending from the

[^0]Key indicators
Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.067$
$w R$ factor $=0.094$
Data-to-parameter ratio $=10.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
nitrogen center demonstrates $\pi-\pi$ interactions between two of the arms with a perpendicular distance of 3.498 (4) \AA, similar to the $\pi-\pi$ interaction distance found in (I).

Experimental

The title compound was prepared by a modification of a previously reported procedure (Granacher et al., 1928). Glycine anhydride was added to a stirred solution of NaH in DMF. When gas evolution had ceased (1.5 h), benzyl chloride was added and, after stirring for 18 h , the solution was filtered to give a white solid. Recrystallization of the solid from ethyl acetate gave colorless glassy crystals (yield 93.5%; m.p. 435-437 K). Please give quantities of reagents

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=294.35$
Monoclinic, $C 2 / c$
$a=11.829(9) \AA$
$b=4.482(3) \AA$
$c=27.91(1) \AA$
$\beta=91.50(5)^{\circ}$
$V=1479.0(16) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.322 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 16 \\
& \quad \text { reflections } \\
& \theta=5.7-9.4^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.15 \times 0.10 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku AFC-7S diffractometer ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.976, T_{\text {max }}=0.991$
7672 measured reflections
1705 independent reflections
1042 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$

$$
\begin{aligned}
& R_{\text {int }}=0.146 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-15 \rightarrow 15 \\
& k=0 \rightarrow 5 \\
& l=-36 \rightarrow 36 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \quad \text { intensity decay: } 1.5 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.067$
$w R\left(F^{2}\right)=0.094$
$S=1.17$
1187 reflections
116 parameters
All H -atom parameters refined

Weighting scheme: Chebychev polynomial with 3 parameters (Carruthers \& Watkin, 1979) 613.558846 .432246 .609
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.28 \mathrm{e}_{\mathrm{C}} \mathrm{\AA}^{-3}$
$\Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 8$	$1.235(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.369(4)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.463(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.381(4)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.341(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.365(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.392(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.381(4)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.384(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.484(3)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.507(3)$		
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$120.6(2)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.9(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$118.1(2)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$120.3(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$121.2(2)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$112.4(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$120.7(2)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{O} 1$	$117.7(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$121.2(2)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 1$	$119.4(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$120.0(2)$	$\mathrm{O} 1-\mathrm{C} 8-\mathrm{N} 1$	$122.9(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$119.4(3)$		

Atoms H2-H8 were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.95 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Atoms H 9 and H 10 were refined freely $[\mathrm{C}-\mathrm{H}=0.95$ (3) and 0.99 (3) \AA]. The large difference in independent reflections and refined reflections is because there was a large number of weak reflections.

Data collection: WinAFC (Rigaku/MSC \& Rigaku, 2001); cell refinement: WinAFC; data reduction: CrystalStructure (Rigaku/MSC,

Figure 1
ORTEPIII (Burnett \& Johnson, 1996) drawing of the title molecule, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for all non-H atoms. Unlabeled atoms are related to labeled atoms by the symmetry code $\left(-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{3}{2}\right)$.

Figure 2
ORTEPIII (Burnett \& Johnson, 1996) packing diagram of the title compound. Displacement ellipsoids are drawn at the 50% probability level for all non-H atoms. H atoms have been omitted.
2003); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: CrystalStructure.

We appreciate the support of Georgia Southern University through the purchase of our AFC-7S X-ray diffractometer.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Burley, S. K. \& Petsko, G. A. (1985). Science, 229, 23-28.

organic papers

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Carpenter, R. A., Farley, A. R., Cox, J. R., Dobson, A. J. \& Whitlock, C. R. (2004). J. Undergrad. Chem. Res. 3, 11-14.

Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst, A35, 698-699.
Dinsmore, C. J. \& Beshore, D. C. (2002). Tetrahedron, 58, 3297-3312.
Gdaniec, M. \& Liberek, B. (1986). Acta Cryst. C42, 1343-1345.
Granacher, C., Wolf, G. \& Weidinger, A. (1928). Helv. Chim. Acta, 11, 12281241.

Hunter, C. A. \& Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534. McGaughey, G. B., Gagnes, M. \& Rappe, A. K. (1998). J. Biol. Chem. 273, 15458-15463.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rigaku/MSC \& Rigaku (2001). WinAFC. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Rigaku/MSC (2003). CrystalStructure. Version 3.5.1. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Witiak, D. T. \& Wei, Y. (1990). Prog. Drug Res. 35, 249-363.

[^0]: (C) 2004 International Union of Crystallography

 Printed in Great Britain - all rights reserved

